
AutoGuard: Reporting Breaking Changes of REST
APIs from Java Spring Boot Source Code

Alexander Lercher, Clemens Bauer, Christian Macho, Martin Pinzger
Department of Informatics Systems

University of Klagenfurt
Klagenfurt, Austria

{alexander.lercher, clemens.bauer, christian.macho, martin.pinzger}@aau.at

Abstract—REpresentational State Transfer (REST) Applica-
tion Programming Interfaces (APIs) are widely used for the
communication between loosely coupled web services. While the
loose coupling allows services to evolve independently, it requires
development teams to actively identify changes in their REST
APIs to notify teams of affected services. If overlooked, changes
can result in unexpected breaking changes that lead to failures
in the affected service.

In this paper, we present AutoGuard, our tool for automatically
extracting and reporting breaking changes of REST APIs in
services developed with the popular Java Spring Boot framework.
AutoGuard consists of two components: the first component
generates the OpenAPI descriptions of two versions of a REST
API from the source code; the second component extracts and
logs the differences between them and reports the API breaking
changes. AutoGuard’s static analysis does not require running
a service to understand its REST API changes, enabling direct
integration into the development process.

We integrated AutoGuard into GitHub’s and GitLab’s contin-
uous integration workflows, where it automatically generates the
REST API change logs for pull and merge requests and reports
any breaking changes. With this information, developers and
code reviewers can make informed decisions on how to proceed
with the requests.

Video demonstration: https://youtu.be/3qeWIVfMvWE
Tool repository: https://github.com/MSA-API-Management/

AutoGuard
Index Terms—API Evolution, REST API, Backward compati-

bility, Continuous integration

I. INTRODUCTION

REpresentational State Transfer (REST) [1] is widely used
to expose Application Programming Interfaces (APIs) of web
services and facilitates the development of loosely coupled
systems. Each web service provides specific functionality and
communicates with other services exclusively over public
REST APIs [2]. This setup promotes maintainability, scala-
bility, and fault-tolerance and allows services to evolve inde-
pendently [3], [4].

As each service’s REST API evolves independently, main-
taining compatibility across services requires more coordina-
tion between development teams than in a monolithic archi-
tecture [5], [6]. Changes in one REST API could result in
unexpected behavior or break the functionality of dependent
consumer services. From the consumer perspective, breaking
changes are undetected at build time and only manifest when
the changed API is called at runtime. Consumer-side contract

tests do not mitigate this problem, as API test doubles do
not automatically represent the latest version. Accordingly,
developers rely on other teams to correctly and timely notify
them of any changes in the API.

As found in our previous study [7], REST API devel-
opers encounter difficulties in understanding the impact of
source code changes on the APIs of their web services.
This problem is exacerbated with larger and more complex
systems. In the worst case, API developers miss a breaking
change, resulting in unexpected failures on the consumer side
during operation. Accordingly, previous studies have proposed
detecting incompatible API changes as early as possible in the
software development process as an important open research
direction [7], [8].

Addressing this direction, we present AutoGuard, our tool
for extracting and reporting breaking REST API changes in
web services developed with the popular Java framework
Spring Boot [9]. It guards such services against source code
changes that introduce unexpected breaking API changes.
AutoGuard uses AutoOAS [10], our novel approach for gen-
erating accurate OpenAPI descriptions of REST APIs di-
rectly from source code. Furthermore, it integrates OpenAPI-
diff [11] for identifying differences between two versions of
an OpenAPI description. Based on the differences, it reports
and highlights breaking REST API changes. We integrated
AutoGuard into GitHub’s and GitLab’s continuous integra-
tion (CI) workflows to facilitate industry adoption.

The remainder of this paper is structured as follows.
Section II presents the architecture and inner workings
of AutoGuard. Section III presents a typical use case of
AutoGuard with an example project. Related work is presented
in Section IV and Section V concludes the paper.

II. AUTOGUARD TOOL

AutoGuard consists of two components that are used in
the workflow shown in Figure 1. First, AutoGuard-gen is
executed twice to generate OpenAPI descriptions for two
versions of a REST API developed with Java Spring Boot.
Second, AutoGuard-diff compares the two OpenAPI descrip-
tions, reports all API changes, and fails the CI pipeline on
breaking changes. This information helps developers and code
reviewers understand the impact of source code changes on a
web service’s REST API.

Author Pre-print
©2025 IEEE
DOI 10.1109/SANER64311.2025.00083

https://youtu.be/3qeWIVfMvWE
https://github.com/MSA-API-Management/AutoGuard
https://github.com/MSA-API-Management/AutoGuard

OpenAPI
Descriptions
OpenAPI

Descriptions

OpenAPI
Descriptions
OpenAPI

Descriptions

Change reportsChange reports

Source code
revision vi

Source code
revision vj

AutoGuard-gen

AutoGuard-gen

OpenAPI
descriptions vi

OpenAPI
descriptions vj

AutoGuard-diff

Change logs

Pass / Fail signal

Fig. 1. Overview of AutoGuard’s workflow, consisting of two components (gray) and their input and output artifacts (white).

TABLE I
SPRING BOOT ANNOTATIONS CONSIDERED BY AUTOOAS FOR GENERATING OPENAPI DESCRIPTIONS

Analysis Step Spring Boot Annotations
Controller classes @Controller, @RestController, @RepositoryRestController
Spring profiles @Profile
Controller-advice classes @ControllerAdvice, @RestControllerAdvice
REST method definitions @PostMapping, @PutMapping, @PatchMapping, @GetMapping, @DeleteMapping, @RequestMapping
Parameter definitions @PathVariable, @RequestParam, @RequestHeader, @RequestBody, @ModelAttribute
Response status codes @ResponseStatus
Exception handler methods @ExceptionHandler
Required data model fields @NotNull, @NotEmpty

We integrated AutoGuard into GitHub and GitLab to fa-
cilitate industry adoption. AutoGuard and its source code are
available on GitHub1.

In the following, we describe the two components in detail.
Note, we do not use GitHub- or GitLab-specific terms to avoid
confusion, as the architecture and workflow are identical for
both. Furthermore, note that both components are independent
of each other and can be replaced by other components that
generate OpenAPI descriptions and compute the differences
between them.

A. AutoGuard-gen

AutoGuard-gen reads the source code of a version of a
web service implemented with Spring Boot and generates one
OpenAPI description for each Spring profile.

1) AutoOAS: AutoGuard-gen uses AutoOAS [10], our ap-
proach for generating accurate OpenAPI descriptions. Table I
shows the Spring Boot annotations that AutoOAS supports. In
the following, we provide a brief description of AutoOAS and
refer the reader to [10] for more details.

AutoOAS consists of three stages. In the first stage, it
parses and statically analyzes a Spring Boot project’s source
code using Spoon [12]. The outputs of this stage are the
controller classes and controller-advice classes of the project.
The controller classes contain all REST methods and the cor-
responding parameters and responses. The controller-advice
classes contain logic about the service’s global exception
handling, which converts Java exceptions to HTTP response
status codes. AutoOAS splits the controller classes based on
Spring profiles and generates one OpenAPI description per
profile.

In the second stage, AutoOAS detects the REST methods,
parameters, and responses in the subset of controller classes

1https://github.com/MSA-API-Management/AutoGuard

of the Spring profile and generates the OpenAPI paths section
from them. Additionally, it uses the controller-advice classes
to translate Java exceptions to HTTP responses status codes.
It records all custom Java classes that are used as parameters
or return values, i.e., the data models of the API. Finally, in
the third stage, AutoOAS analyzes the Java classes of these
data models and generates the OpenAPI schemas section.

We published AutoOAS as a Java command-line tool that
requires two arguments: the Spring Boot project’s source code
directory source_dir and an output directory output_dir for
storing the generated OpenAPI descriptions. Note, AutoOAS
names the individual OpenAPI description files after the
Spring profiles they describe.

2) AutoOAS evaluation: In our previous work [10], we
evaluated AutoOAS on seven real-world Spring Boot projects
and compared its precision and recall to three state-of-the-
art approaches for generating OpenAPI descriptions, namely
Respector [13], Prophet [14], and springdoc-openapi [15].
AutoOAS achieved the highest overall precision and recall
for identifying REST methods (100% precision; 100% re-
call), parameters (73%; 69%), and responses (99%; 97%).
Furthermore, it was the only approach correctly considering
and representing the inheritance hierarchy in data models.

As part of our evaluation, we also analyzed the runtime
performance of AutoOAS. It achieved an average runtime
of 11.0 seconds and a median runtime of 7.6 seconds per
project and took a maximum of 31.4 seconds for the largest
project containing 28,099 lines of Java code. We argue that
the runtime of AutoOAS is appropriate considering its high
precision and recall as well as its accurate representation
of data models compared to the other approaches. Due to
its promising results and appropriate runtime, we selected
AutoOAS for integration into AutoGuard.

https://github.com/MSA-API-Management/AutoGuard

1 docker run
2 -v <source_dir>:/project
3 alexx882/auto-oas:1.0
4 /project
5 /project/<output_dir>/oas

Listing 1. Shell command running the AutoOAS Docker image analyzing
a Spring Boot project in source_dir and writing the generated OpenAPI
descriptions to output_dir with the oas prefix.

3) Workflow integration: We provide a Docker image2

of AutoOAS for integration into AutoGuard. The example
command in Listing 1 runs the AutoOAS Docker image. It
binds the source_dir to the /project directory inside the Docker
container (Line 2) and provides the same /project directory
as an argument to AutoOAS (Line 4). It writes the OpenAPI
descriptions prefixed with oas to output_dir inside the /project
directory (Line 5).

AutoGuard-gen sets the source_dir to the repository’s root
directory and runs the Docker image. It persists the generated
OpenAPI descriptions, temporarily stored in output_dir, on
GitHub and GitLab as workflow and respectively job artifacts,
making them available to developers and AutoGuard-diff.

B. AutoGuard-diff

AutoGuard-diff uses the OpenAPI descriptions generated
for each Spring profile and version of the API to extract the
differences between them. Then, it reports the differences and
highlights API breaking changes.

1) OpenAPI-diff: AutoGuard-diff uses the OpenAPI-diff
tool [11] to extract the differences between two OpenAPI de-
scriptions. OpenAPI-diff compares the structure of the REST
methods, parameters, and responses in the paths section and of
the data models in the schemas section between two OpenAPI
versions and describes their differences in various output for-
mats. Additionally, it classifies the identified changes as non-
breaking and breaking based on their backward compatibility.
OpenAPI-diff is available as a Java library or as a Docker
image and takes the paths of two OpenAPI descriptions as
input.

AutoGuard-diff tailors the execution of OpenAPI-diff with
the following two arguments. First, it uses the --html
<file_path> option to generate an HTML report of the
identified differences. Figure 2 shows an example HTML
change log of OpenAPI-diff. It describes a new REST method
POST /api/customers, a deleted method GET /api/customer-
s/orders, and changes to a parameter and the returned data
model of the method GET /api/customers/invoice. Second,
it uses the --fail-on-incompatible option to get
feedback about breaking changes. With this option enabled,
OpenAPI-diff will fail with an exit code of 1 if break-
ing changes are detected. If all changes are non-breaking,
OpenAPI-diff returns the exit code 0.

2) Workflow integration: AutoGuard-diff takes as input two
sets of OpenAPI descriptions for two REST API versions.
Each set consists of the OpenAPI descriptions generated for

2https://hub.docker.com/repository/docker/alexx882/auto-oas/general

Fig. 2. HTML change log generated by OpenAPI-diff

each Spring profile of one API version. AutoGuard-diff pairs
the OpenAPI descriptions between the sets based on their
file names, executes OpenAPI-diff for each file pair using the
OpenAPI-diff Docker image with the options described above,
and temporarily stores the change logs and exit codes.

After all OpenAPI description file pairs are analyzed,
AutoGuard-diff persists the change logs as workflow and job
artifacts on GitHub and GitLab, respectively. Finally, it sums
up all exit codes, where a result of 1 or higher indicates that
breaking changes were identified. In this case, AutoGuard-diff
fails the whole AutoGuard workflow and reports the individual
incompatible Spring profiles in the job log.

Notably, two edge cases lead to missing OpenAPI descrip-
tion files for one of the REST API versions. Deleting a Spring
profile in the new version v2 leads to a missing file for this
profile in v2, and adding a profile to a new version v2 leads to a
missing file for this profile in the previous version v1. For both
cases, AutoGuard-diff replaces the missing file with an empty
OpenAPI description, i.e., without any paths or schemas.
Based on that, AutoGuard considers deleting a profile as
a breaking change if the profile was not empty. Adding a
new profile introduces new REST methods, which are consid-
ered backward compatible [7] and therefore denoting a non-
breaking change. Note, AutoGuard considers renamed profiles
as added and deleted and consequently, reports a breaking
change if the renamed profile contains REST methods. We
argue that renaming a profile potentially requires changing run
and deployment configurations and should not go unnoticed.

https://hub.docker.com/repository/docker/alexx882/auto-oas/general

Fig. 3. The GitHub pull request with one failed check indicating that AutoGuard identified breaking API changes.

1 on: [pull_request]
2

3 jobs:
4 autoGuard:
5 runs-on: ubuntu-latest
6 steps:
7 - uses: MSA-API-Management/AutoGuard@v1

Listing 2. GitHub workflow running AutoGuard in the event of a pull request.

III. BREAKING CHANGE SCENARIO

In this section, we demonstrate how to integrate AutoGuard
into an existing GitHub or GitLab repository. Our example
repository contains a simple Spring Boot web service with a
single controller that consists of two REST methods for adding
and querying customer data. Then, we show how AutoGuard
extracts and reports a breaking API change from a source
code change in the service’s data model class. We provide
the repository used for our scenario on GitHub3.

A. GitHub and GitLab integration

The scenario starts with an existing repository containing
the service’s source code hosted on GitHub or GitLab.

1) GitHub: To use AutoGuard in a GitHub repository,
the developer creates a new GitHub workflow and adds the
AutoGuard GitHub action to it. Listing 2 shows the GitHub
workflow in our example project. Line 1 configures the work-
flow to trigger on pull requests. Line 4 defines a job called
autoGuard that runs the AutoGuard GitHub action (Line 7).
With this configuration, AutoGuard automatically analyzes
the head and base of any pull request, saves the OpenAPI
descriptions and their differences as job artifacts, and fails the
workflow if breaking changes are detected.

2) GitLab: To use AutoGuard in a GitLab repository,
the developer creates or extends the GitLab pipeline and
adds the AutoGuard GitLab template containing a job called
.autoGuard to it. Listing 3 shows a configuration that triggers
AutoGuard on merge requests in our example project. Lines 1
and 2 import the AutoGuard template to the configuration
file, and Line 4 sets up the analysis for the repository’s root

3https://github.com/MSA-API-Management/AutoGuard-example-project

1 include:
2 - remote: ’https://raw.githubusercontent.com/

MSA-API-Management/AutoGuard/refs/tags/v1/
AutoGuard.gitlab-ci.yml’

3 inputs:
4 source_dir: "."
5

6 autoGuard:
7 extends: .autoGuard
8 rules:
9 - if: $CI_PIPELINE_SOURCE ==

’merge_request_event’
10 stage: test

Listing 3. GitLab pipeline running AutoGuard in the event of a merge request.

directory. Lines 6 and 7 extend the .autoGuard job to define
the execution stage (Line 10) and the rule to trigger the job on
merge requests (Line 9). With this configuration, AutoGuard
analyzes the source and target of any merge request, saves the
OpenAPI descriptions and their differences as job artifacts,
and fails the pipeline if breaking changes are detected.

B. Introducing a breaking change

After the repositories are set up, AutoGuard automatically
guards pull and merge requests, respectively. In the following,
we present this scenario for GitHub. Once a developer opens
a pull request to the main branch in our example project, the
AutoGuard workflow is triggered. First, AutoGuard-gen gener-
ates the OpenAPI descriptions for the pull request head on the
feature branch and the pull request base on the main branch.
Next, AutoGuard-diff identifies the OpenAPI description pairs
for each profile and extracts the differences between them.

In our example scenario, the feature branch introduces an
unexpected breaking change to the REST API by adding a
@NotNull annotation to the customer’s email field. Accord-
ingly, AutoGuard detects this change and fails the workflow
with the information that the pull request would break the
API’s backward compatibility. We show the corresponding
GitHub pull request in Figure 3. With this information, the
developers and code reviewers can make informed decisions
on how to proceed with the pull request.

https://github.com/MSA-API-Management/AutoGuard-example-project

IV. RELATED WORK

Related works focused on detecting and classifying API
changes in the source code, e.g., in Java libraries [16], [17]
and the Android Platform API [18]. On the source code
level, existing approaches [19], [20] use control and data flow
analysis to identify semantic changes and their impacts inside
a component. However, they do not consider the impact of
code changes on the API level. Several approaches [21], [22]
detected changes in APIs of web services specified in the Web
Service Description Language (WSDL). However, they can
not handle REST APIs, which have become the standard for
implementing communication between web services [7].

OpenAPI-diff [11] identifies differences between REST
APIs described in the OpenAPI Specification. Accordingly, it
requires the availability of OpenAPI descriptions during anal-
ysis. Previous approaches and tools for generating OpenAPI
descriptions [15], [23]–[25] used runtime reflection and, hence,
required the domain knowledge to create a valid configuration
for the service and the infrastructure to run it.

To the best of our knowledge, we propose the first tool
for reporting breaking changes in REST APIs that is directly
integratable into the development process. AutoGuard utilizes
the OpenAPI generation capabilities of AutoOAS [10] and,
hence, does not require executing any services for identifying
their REST API changes.

V. CONCLUSION

In this work, we presented AutoGuard, our tool for extract-
ing and reporting breaking changes of REST APIs directly
from Java Spring Boot source code changes. AutoGuard uses
AutoOAS to generate the OpenAPI descriptions of two ver-
sions of a REST API and OpenAPI-diff to identify their non-
breaking and breaking changes. AutoGuard does not require
running any service under analysis, making it applicable for
direct integration into the development process.

We integrated AutoGuard into the CI workflows of GitHub
and GitLab, where it automatically generates the REST API
change logs for pull (or merge) requests and indicates breaking
changes by failing the workflow (or pipeline). We provide the
GitHub action, GitLab template, and an example project on
GitHub.

In future work, we plan to evaluate AutoGuard in a user
study. Furthermore, we plan to extend AutoGuard-gen to
support other frameworks, such as Jersey [26], and to improve
AutoGuard-diff, for instance, to report individual data model
changes in the change log.

REFERENCES

[1] R. T. Fielding, “Rest: architectural styles and the design of network-
based software architectures,” Doctoral dissertation, University of Cal-
ifornia, 2000.

[2] N. Kratzke and P.-C. Quint, “Understanding cloud-native applications
after 10 years of cloud computing - a systematic mapping study,” Journal
of Systems and Software, vol. 126, pp. 1–16, 2017.

[3] S. Newman, Monolith to Microservices: Evolutionary Patterns to Trans-
form Your Monolith. O’Reilly Media, Incorporated, 2019.

[4] K. Gos and W. Zabierowski, “The comparison of microservice and
monolithic architecture,” in 2020 IEEE XVIth International Conference
on the Perspective Technologies and Methods in MEMS Design (MEM-
STECH), pp. 150–153, 2020.

[5] S.-P. Ma, C.-Y. Fan, Y. Chuang, I.-H. Liu, and C.-W. Lan, “Graph-based
and scenario-driven microservice analysis, retrieval, and testing,” Future
Generation Computer Systems, vol. 100, pp. 724–735, 2019.

[6] O. Zimmermann, M. Stocker, D. Lübke, C. Pautasso, and U. Zdun,
“Introduction to microservice api patterns (map),” in International
Conference on Microservices (Microservices 2019), 2019.

[7] A. Lercher, J. Glock, C. Macho, and M. Pinzger, “Microservice api
evolution in practice: A study on strategies and challenges,” Journal of
Systems and Software, vol. 215, p. 112110, 2024.

[8] T. Cerny, M. J. Donahoo, and M. Trnka, “Contextual understanding of
microservice architecture: Current and future directions,” SIGAPP Appl.
Comput. Rev., vol. 17, p. 29–45, jan 2018.

[9] Spring, “Spring Boot.” https://spring.io/projects/spring-boot. [Accessed
10-10-2024].

[10] A. Lercher, C. Macho, C. Bauer, and M. Pinzger, “Generating ac-
curate openapi descriptions from java source code,” arXiv, 2024.
https://doi.org/10.48550/arXiv.2410.23873.

[11] OpenAPITools, “OpenAPI-diff.” https://github.com/OpenAPITools/op
enapi-diff. [Accessed 10-10-2024].

[12] R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera, and L. Seinturier,
“Spoon: A Library for Implementing Analyses and Transformations
of Java Source Code,” Software: Practice and Experience, vol. 46,
pp. 1155–1179, 2015.

[13] R. Huang, M. Motwani, I. Martinez, and A. Orso, “Generating rest api
specifications through static analysis,” in Proceedings of the IEEE/ACM
46th International Conference on Software Engineering, ICSE ’24, (New
York, NY, USA), Association for Computing Machinery, 2024.

[14] T. Cerny, A. S. Abdelfattah, J. Yero, and D. Taibi, “From static
code analysis to visual models of microservice architecture,” Cluster
Computing, vol. 27, pp. 4145–4170, Jul 2024.

[15] springdoc, “springdoc-openapi.” https://github.com/springdoc/springdoc
-openapi. [Accessed 10-10-2024].

[16] A. Brito, L. Xavier, A. Hora, and M. T. Valente, “Apidiff: Detecting
api breaking changes,” in 2018 IEEE 25th International Conference on
Software Analysis, Evolution and Reengineering (SANER), pp. 507–511,
2018.

[17] D. Silva and M. T. Valente, “Refdiff: Detecting refactorings in version
histories,” in 2017 IEEE/ACM 14th International Conference on Mining
Software Repositories (MSR), pp. 269–279, 2017.

[18] L. Li, T. F. Bissyandé, H. Wang, and J. Klein, “Cid: Automating
the detection of api-related compatibility issues in android apps,” in
Proceedings of the 27th ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2018, (New York, NY, USA),
p. 153–163, Association for Computing Machinery, 2018.

[19] Q. Hanam, A. Mesbah, and R. Holmes, “Aiding code change understand-
ing with semantic change impact analysis,” in 2019 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pp. 202–
212, 2019.

[20] H. A. Nguyen, T. N. Nguyen, D. Dig, S. Nguyen, H. Tran, and M. Hilton,
“Graph-based mining of in-the-wild, fine-grained, semantic code change
patterns,” in 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE), pp. 819–830, 2019.

[21] A. Chaturvedi and D. Binkley, “Web service slicing: Intra and inter-
operational analysis to test changes,” IEEE Transactions on Services
Computing, vol. 14, no. 3, pp. 930–943, 2021.

[22] D. Romano and M. Pinzger, “Analyzing the evolution of web services
using fine-grained changes,” in 2012 IEEE 19th International Confer-
ence on Web Services, pp. 392–399, 2012.

[23] S. Serbout, A. Romanelli, and C. Pautasso, “Expresso: From express.js
implementation code to openapi interface descriptions,” in Software
Architecture. ECSA 2022 Tracks and Workshops (T. Batista, T. Bureš,
C. Raibulet, and H. Muccini, eds.), (Cham), pp. 29–44, Springer
International Publishing, 2023.

[24] springfox, “SpringFox.” https://github.com/springfox/springfox.
[Accessed 10-10-2024].

[25] Swagger, “Swagger Core.” https://github.com/swagger-api/swagger-cor
e. [Accessed 10-10-2024].

[26] Eclipse Foundation, “Eclipse Jersey.” https://eclipse-ee4j.github.io/jers
ey/. [Accessed 10-10-2024].

https://spring.io/projects/spring-boot
https://github.com/OpenAPITools/openapi-diff
https://github.com/OpenAPITools/openapi-diff
https://github.com/springdoc/springdoc-openapi
https://github.com/springdoc/springdoc-openapi
https://github.com/springfox/springfox
https://github.com/swagger-api/swagger-core
https://github.com/swagger-api/swagger-core
https://eclipse-ee4j.github.io/jersey/
https://eclipse-ee4j.github.io/jersey/

	Introduction
	AutoGuard tool
	AutoGuard-gen
	AutoOAS
	AutoOAS evaluation
	Workflow integration

	AutoGuard-diff
	OpenAPI-diff
	Workflow integration

	Breaking change scenario
	GitHub and GitLab integration
	GitHub
	GitLab

	Introducing a breaking change

	Related work
	Conclusion
	References

