ll UNIVERSITAT

Microservice API Evolution in Practice:
A Study on Strategies and Challenges

Alexander Lercher, Johann Glock, Christian Macho, Martin Pinzger
University of Klagenfurt, Austria
{alexander.lercher, johann.glock, christian.macho, martin.pinzger } @aau.at

www.aau.at 'l

Microservice APIs

www.aau.at "

Microservice APIs

» Request-response via HTTP REST — —

» Event-driven via message brokers _—
@@s
= Bele e
Web Shop Ordermg Invoicing)rler
\ /

www.aau.at l'

3

Microservice API Evolution

» Request-response via HTTP REST — —

» Event-driven via message brokers _—

= B e
&S — — =

03 = Se=r = Oy

Web Shop Ordk Invoicing Wﬂer v2

www.aau.at l'

4

The Journal of Systems and Software 215 (2024) 112110

Contents lists available at ScienceDirect

SOFTWARE

The Journal of Systems & Software »

TN 3

EILSEVIER journal homepage: www.elsevier.com/locate/jss

()

. Check for
Microservice API Evolution in Practice: A Study on Strategies and Rt
Challenges™
Alexander Lercher *, Johann Glock, Christian Macho, Martin Pinzger
Department of Informatics Systems, University of Klagenfurt, UniversitdtsstrafSe 65-67, Klagenfurt, 9020, Austria
ARTICLE INFO ABSTRACT
Keywords: Nowadays, many companies design and develop their software systems as a set of loosely coupled microservices
Microservice architecture that communicate via their Application Programming Interfaces (APIs). While the loose coupling improves
g ; e"°1}1ﬁ“’n maintainability, scalability, and fault tolerance, it poses new challenges to the API evolution process. Related

versioning

works identified communication and integration as major API evolution challenges but did not provide the
underlying reasons and research directions to mitigate them. In this paper, we aim to identify microservice
API evolution strategies and challenges in practice and gain a broader perspective of their relationships.
We conducted 17 semi-structured interviews with developers, architects, and managers in 11 companies and
analyzed the interviews with open coding used in grounded theory. In total, we identified six strategies and six
challenges for REpresentational State Transfer (REST) and event-driven communication via message brokers.
The strategies mainly focus on API backward compatibility, versioning, and close collaboration between teams.
The challenges include change impact analysis efforts, ineffective communication of changes, and consumer
reliance on outdated versions, leading to API design degradation. We defined two important problems in
microservice API evolution resulting from the challenges and their coping strategies: tight organizational
coupling and consumer lock-in. To mitigate these two problems, we propose automating the change impact
analysis and investigating effective communication of changes as open research directions.

Backward compatibility
API design degradation
Development team collaboration

Editor’s note: Open Science material was validated by the Journal of Systems and Software Open Science Board.

Research Questions

RQ1: What means do developers use to exchange messages
between services, and how do they document them?

RQ2: Which strategies do developers follow to introduce and
communicate API changes in loosely coupled systems?

RQ3: Which challenges do developers face when introducing and
communicating API changes in loosely coupled systems?

Methodology P,

L]
G
" Semi-structured interviews NJ

" n=17 interview participants

» Sampled from 11 companies

RQ2: Strategies

www.aau.at "

RQ2: Strategies — Backward compatibility

API evolution strategy #P #C

Stay compatible and avoid unexpected breaking changes 17 11
Work around breaking changes 17 11
Regression test the API 10 8
Think ahead and design a dynamic API 6 6

Participants working with MSA and large systems apply regression testing

RQ2: Strategies — Versioning

API evolution strategy #P #C

Version the API 17 11
Create a new version on breaking changes 17 11
Expose multiple versions simultaneously 13 8

Architects recommend exposing all versions within one service

RQ2: Strategies — Close Collaboration

API evolution strategy #P #C

Collaborate with other teams 15 9
Actively involve consumer teams 14 8
Follow the API-first approach 11 8

Architects prefer meetings, senior developers prefer API previews

RQ3: Challenges

RQ3: Challenges — Change Impact Analysis

API evolution challenge #P #C

Manual change impact analysis is error-prone 14 11
Code changes affect the API unexpectedly 9 0/
Understanding consumed APIs’ changes is effort 9 Y/

Participants recommend close collaboration to mitigate this challenge

RQ3: Challenges — Consumers

API evolution challenge #P #C

Consumers rely on API compatibility 12 Vi

Communication with other teams lacks clarity 9 Y
Consumers might be unknown 7 5
Informal communication channels 17 11
Communication suffers from hierarchy 6 4

Generally applicable communication strategy does not exist

RQ3: Challenges — Maintainability

API evolution challenge #P #C

API maintainability and usability degrade over time 14 9
Outdated API versions add maintenance overhead 10 8
Backward compatibility increases technical debt 9 6

Most architects and senior developers acknowledge this challenge

Identified underlying problems

www.aau.at l'
16

Identified underlying problems

Accept necessary
breaking changes

Strategy

Challenge

Collaborate with

other teams Version the API

Tight organizational
coupling

www.aau.at l'

Accept necessary
breaking changes

|
v v

ht ht et ht Manual change Communication
1 : Z impact analysis with other teams
is error-prone lacks clarity
I 1
SRR CLCEETICE = }-4----
Collaborate with p
e Stay compatible Vi n the API

Consumers rely Degrading APT
on AP maintainability
compatibility and usability

= Replaces the manual change impact analysis

Consumer lock-in

» Requires frequent meetings and collaboration

* Leads to fragmented and undocumented knowledge within teams

» “You see, the whole topic is really organizational-heavy, organizational
and planning-heavy. [...| The technical part is then just doing it”

Accept necessary
breaking changes

|
v v

et Manual change Communication
O I I I I I e r O C — 1 I I impact analysis with other teams
is error-prone lacks clarity
I 1
b v "___-.:""'l' """"" 'l""":
. 1
i Cocliii(;r::n‘gth : i Stay compatible Version the API i
| T :
. ——1
: ° : : : : Consumers rely Degrading API :
1
* Replaces the communication with other teams | 1y B |
- o 'y compatibility and usability
| Tight organizational ! | |
1 coupling : 1 Consumer lock-in 1

* Requires continuous support for outdated API versions

» Degrades the API design and increases technical debt

» “The cost of these workarounds that we do, I don't know. I don't dare to
estimate that.”

Accept necessary
breaking changes

|
v v

d d Manual change Communication
impact analysis with other teams
is error-prone lacks clarity
1

|
SCEEEE LTI I O CLCC T 1-4----

Tight organizational

coupling Consumer lock-in

1
1 1 1

1
1 5 1 1
1 Collaberstonvit] 1 1| Stay compatible Version the API |1
| other teams : 1 |
I ¥ ' |
: h
1 : 1 Consumers rely Degrading API 1
: ! on API maintainability |
| : | compatibility and usability |
1 1 1
1 ' 1

www.aau.at l'

Open Research Directions S SR

other teams

Consumers re ly Degrading APT
on API maintainability

r
1
1
1| Stay compatible Version the API
1
1
1
1
1
: compatibility and usability

* Automating the change impact analysis

* Impact of the provider’s source code changes on the API

* Impact of the API changes on individual consumers

breaking chang
I
o o \J ¥
Manual change Communication
impact analysis with other teams
is error-prone lacks clarity
I 1
:_ _____ 1 _____'i:____'l_ _________ 'l_' |
1
Collaborate with |1 . . 1
e ! Stay compatible Version the API :
I
i 1 g
1 Consumers rely Degrading APT 1
on API maintainability |
. compatibility and usability |
Tight org tional
coupling Consumer lock-

* Automating the change impact analysis
* Impact of the provider’s source code changes on the API

* Impact of the API changes on individual consumers

* Providing effective change communication
» Reliably notifying
= affected consumers

» with customized change logs

Microservice API Evolution in Practice:
A Study on Strategies and Challenges

Interview Participants

Participant Highest education Technical role Exp® (yrs) Exp® (yrs) System architecture System Team
code size® size
C1-P1 Bachelor Developer 7 3 MSA and monolith 25 6
C2-P1 Ph.D. Principal architect 13 6 MSA - -
C2-P2 Ph.D. Architect 10 6 MSA 50 6
C2-P3 Master Architect 10 6 MSA 50 6
C3-P1 Master Architect 10 3 Services 6 10
C3-P2 Bachelor Developer 4 4 Services 7 10
C3-P3 Technical high school Developer 7 5 Services 20 17
C5-P1 Master Senior developer/Technical lead 10 4 Services 30 5
C5-P2 Technical high school Senior developer 7 6 Services 30 5
C6-P1 Bachelor Senior developer/Technical lead 15 8 MSA 15 15
C7-P1 Master Developer 4 3 Services and monolith =) 6
C8-P1 Bachelor Developer 6 3 MSA 10 10
C9-P1 Ph.D. Developer 2 1 MSA and Function-as-a-Service 70 3
C10-P1 Master Architect 14 7 MSA and monolith 15 7
C11-P1 Master Architect 9 7 Self-contained systems and monolith 20 6
C11-P2 Master Principal architect/Department head 20 7 i Self-contained systems and monolith - -
C12-pP1 Technical high school Senior developer/Product manager 25 5 Services 40 13

Interview Participants

Company code Industry field Company size # P
Cl Construction Large 1
C2 Access management Large 3
C3 Automotive Large 3
C5 Video processing Medium-sized 2
C6 Retail Large 1
C7 Monitoring Large 1
C8 Process digitization Small 1
C9 E-commerce Small 1
C10 Traffic management Large 1
Cl11 Research and higher education Large 2
Cl2 E-mobility Large 1

RQ1: Message Exchange Techniques

100 - - .

— 80‘ (]

5

&

= 60- o

o

8

£ 40-

o

(ol

o

[l
20 1 o
" - -

REST Event-driven SOAP

www.aau.at l'

RQ2: More Strategies

API evolution strategy #P #C

Accept necessary breaking changes 17 11
Understand the reasons for breaking changes i 7 . i |
Consider structural and behavioral changes 5 4

Internally, just break (and fix) it 11 10

Abstract external systems’ APIs 6 S

RQ3: More Challenges

API evolution challenge #P #C

Governmental services are uncooperative 6 4

Event-driven communication evolution is disregarded 7z 4

