
Managing API Evolution in Microservice Architecture
Alexander Lercher
Software Engineering Research Group, University of Klagenfurt

Shopping Cart Ordering Invoice v1 Carrier v1
Web Shop

Motivation

Event-driven

Request-response

- Semi-structured interviews with n=17
developers and architects from 11 companies

- Open coding used in grounded theory

Tight organizational
coupling

Consumers rely
on API

compatibility

Version the API

Accept necessary
breaking changes

Degrading API
maintainability
and usability

Stay compatibleCollaborate with
other teams

Manual change
impact analysis
is error-prone

Communication
with other teams

misses clarity

Consumer lock-in

Strategy

Challenge

- Evolution strategies focus on backward
compatibility and close collaboration

- Evolution challenges comprise manual change
analysis and unclear communication

- Close collaboration creates the problem of tight
organizational coupling

- Backward compatibility and unclear
communication result in consumer lock-in

RQ1 Which strategies do developers follow to introduce and
communicate API changes in loosely coupled systems,
and what challenges do they face?

RQ2 How can structural and behavioral changes of REST APIs
be automatically extracted based on the source code?

RQ3 How can relevant REST API changes be automatically
communicated to consumer teams affected by these
changes?

Research Questions

Catalogue of API Evolution Strategies and Challenges (RQ1)

Alexander Lercher, Johann Glock, Christian Macho, and Martin Pinzger. 2023. Microservice API Evolution in
Practice: A Study on Strategies and Challenges. arXiv:2311.08175 [cs.SE]

REST API Change Extraction from Source Code Changes (RQ2)

Artifact

Contribution

- Change Extractor detects structural changes in
OpenAPI specification and behavioral changes in
source code

- An extended Change Type Taxonomy comprises
structural and behavioral REST API changes

- The Change Classifier translates low-level
changes to the structural and behavioral
REST API changes

Communication of REST API Changes to Affected Teams (RQ3)

- API providers publish REST API changes
extracted from the source code repository

- API consumers register their dependencies
via a web interface or configuration file in their
repository

- Consumers receive targeted change
notifications with multiple levels of detail and
timeliness

- User study to evaluate the timeliness,
completeness, and understandability of the
change notifications

Providers Consumers

Notification
Service

Contact

- Loosely coupled (micro-)services provide no immediate feedback for consumers on API changes
- Consumer services may break or exhibit unexpected behavior after calling the changed API
- Affected development teams rely on active communication and collaboration with provider teams

Changelog for Carrier v2
Shipping information endpoint renamed:
- GET /orders/{orderId}
- GET /orders/{orderId}/shipping

Expected delivery date format changed:
- YYYYMMDD
- YYYY-MM-DD

Changelog for Invoice v2
Shipping address behavior changed:
- mandatory
- optional, null means shipping address is invoice address

Shopping Cart Ordering Invoice v2 Carrier v2
Web Shop

