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ABSTRACT
Nowadays, many software systems are split into loosely coupled
microservices only communicating via Application Programming
Interfaces (APIs) to improve maintainability, scalability, and fault
tolerance. However, the loose coupling between microservices pro-
vides no immediate feedback on breaking API changes, and con-
suming services break or exhibit unexpected behavior only after the
first actual call to the changed API. Hence, development teams must
actively identify and communicate all breaking changes to affected
teams to stay compatible. This research addresses this problem with
three contributions. First, we identified API evolution strategies
and open challenges in practice with an explorative study. Based
on the study findings, we formulated two open research directions
for evolving publicly accessible APIs, i.e., REpresentational State
Transfer (REST) APIs. As the second contribution, we will introduce
a REST API change extraction approach to improve the change no-
tification accuracy. We plan experiments on open-source projects
to evaluate our approach’s accuracy and compare it to openapi-diff
for structural changes. Third, we plan to investigate methods for
automating communication with affected teams, which will then
improve the change notification reliability. Finally, we will evaluate
the accuracy and reliability of our notifications with a user study.
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1 INTRODUCTION
The Microservice Architecture (MSA) improves the overall main-
tainability, scalability, and fault-tolerance of a system by replac-
ing a large application with many small and loosely coupled ser-
vices [16, 24, 26]. Each such microservice manages a subset of
the overall system’s responsibilities and individual development
teams exclusively develop, maintain, and deploy a logical set of mi-
croservices. Typically, the MSA employs two means of communica-
tion [38]: event-driven for system-internal service communication,
e.g., publish-subscribe, and request-response for communicating to
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external services, e.g., REpresentational State Transfer (REST) [12].
In this paper, we use the term Application Programming Interface
(API) for both, as both enable communication between microser-
vices. The communication style in MSA is called "smart endpoints
and dumb pipes" and allows the APIs to evolve independently [35].

However, as each microservice API’s data structures and behav-
iors evolve independently, the API evolution process requires more
synchronization efforts between the development teams than for
a single monolithic code base [24, 39]. Changes in one API could
result in unexpected behavior and potentially break consumer ser-
vices, i.e., services interacting with the API [35]. From the consumer
perspective, such breaking changes are undetected at compile time
and only manifest during an actual call to the changed API at run-
time. Consumer-side contract tests do not mitigate this problem as
the API test doubles do not automatically reflect the latest changes.
Accordingly, development teams of consumer services rely on the
teams providing an API to correctly notify them about all changes
in advance. The provider teams can utilize regression testing [2, 15]
to detect API contract violations after introducing changes. Still,
they must understand the actual API changes leading to these vio-
lations. We conducted preliminary discussions with practitioners
regarding these challenges. In practice, they manually identify the
API changes and notify other teams about them, slowing down the
API evolution process and making it susceptible to human error.

2 RELATEDWORK
Related works identified the communication and integration of mi-
croservices as major challenges in the MSA [1, 32]. Chen et al. [8]
conducted a grey literature review on microservice API concerns
in practice and identified concerns with API design, API version-
ing, and API testing. Wang et al. [34] studied REST API change
discussions on Stack Overflow and concluded that REST APIs are
more change-prone than Java library APIs and theWeb Services De-
scription Language (WSDL). Bogart et al. [3] found that developers
maintain old API versions to prolong the transition period for con-
sumers but the several separate versions increase the maintenance
cost as a result. According to Zdun et al. [37], the microservice API
evolution process still misses efficient communication and support
for consumers affected by API changes. Similarly, Cerny et al. [6]
proposed detecting incompatible API changes and communicating
changes to consumer teams as open research challenges. Multiple
works focused on detecting and classifying API changes in source
code, e.g., in Java libraries [4, 29] and the Android Platform [23].
They automatically identify breaking source code API changes and
accordingly update the calls [36] or the API documentation [21].
Related works also investigated the evolution of WSDL [7, 27], but
only recently started to target REST APIs [20]. To this end, related
works did not discuss the underlying reasons for the API evolu-
tion challenges and how to solve them sustainably, and change
extraction approaches did not sufficiently target REST API changes.
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3 RESEARCH QUESTIONS
We hypothesize that companies currently do not follow a sustain-
able microservice API evolution strategy. Further, we hypothesize
that automated approaches for reporting structural and behavioral
breaking API changes and notifying affected consumers would im-
prove the change notification accuracy and reliability, mitigating
human errors and delays with currently used strategies. Hence, we
define the following research questions (RQs) to address:

RQ1 Which strategies do developers follow to introduce and com-
municate API changes in loosely coupled systems, and what
challenges do they face?

RQ2 How can structural and behavioral changes of REST APIs be
automatically extracted based on the source code?

RQ3 How can relevant REST API changes be automatically com-
municated to consumer teams affected by these changes?

4 METHODOLOGY AND CONTRIBUTIONS
This section focuses on the research methods to answer the three
RQs and the expected contributions.

4.1 Catalogue of API evolution strategies and
challenges

To answerRQ1, we conducted semi-structured interviews [17] with
developers and architects working on developing loosely coupled
systems exposing an API, e.g., REST or event-driven, for at least
one year. We applied open coding [9] used in grounded theory [14]
and analyzed the interview transcripts iteratively. The codebook
began to stabilize after 12 interviews, and we did not encounter
any new categories for the last three interviews, indicating theo-
retical saturation [33]. To mitigate threats to validity, we applied
investigator triangulation [5] and member checking [28]. We are
currently in the process of publishing the results.

In summary [22], we conducted 17 interviews with participants
from 11 companies. We identified six microservice API evolution
strategies in practice, which we formulated as best practices to
follow. Further, we identified six challenges and formulated them
as pitfalls when handling API evolution. We drew the relationships
between the strategies and challenges and discovered two impor-
tant problems in the evolution process of publicly accessible APIs,
i.e., REST APIs. First, development teams informally communicate
REST API changes to affected teams, e.g., through verbal meetings,
instant messaging channels, or e-mails, and collaborate closely
to avoid or quickly repair unnoticed breaking changes. Second,
doubtful or unresponsive consumer teams not migrating to a new
REST API version force the provider team to support and maintain
outdated versions, continuously increasing technical debt and de-
grading the overall API design. Based on these two problems, we
propose two research directions: a) automating the impact analysis
of source code changes on the REST API and b) automating the
communication of REST API changes to affected teams.

4.2 Automated REST API change extraction
from source code changes

To answer RQ2, we plan to propose an approach for extracting
REST API changes from source code changes and to evaluate the

prototype on Java Spring Boot1 open-source projects. We selected
Java Spring Boot as one of the most popular microservice frame-
works offering high flexibility in defining REST APIs [8, 10].

Our approachwill consist of a change extractor and a change clas-
sifier. The change extractor analyzes the OpenAPI specifications2
of two REST API versions, generates suitable intermediate mod-
els introduced by us, and extracts the structural changes between
them using GumTree [11], a popular approach for differencing tree
structures [13, 19, 25]. To extract the behavioral changes, we will
experiment with the limited behavioral description provided by the
OpenAPI specification and supplement it with a lightweight control
and data flow analysis of the source code, such as introduced by
Hanam et al. [18]. We will also evaluate the feasibility of describing
detailed behavioral information by extending the OpenAPI speci-
fication. Next, we will investigate existing REST API change type
taxonomies [30, 34], currently focusing on structural changes, and
will extend them with novel behavioral changes. The change classi-
fier then applies our extended taxonomy on the extracted structural
and behavioral changes and finally outputs the corresponding REST
API changes. We plan experiments on existing open-source projects
to evaluate our approach’s applicability and change classification
accuracy. Further, we will compare our approach to the state-of-
the-art openapi-diff3, which identifies structural changes between
OpenAPI specifications, but does not detect behavioral changes.

4.3 Automated communication of REST API
changes to affected teams

To answerRQ3, we will build on the findings from our study in Sec-
tion 4.1 by automating REST API change notifications to affected
teams via online collaboration platforms, such as GitHub andGitLab.
We will provide GitHub Actions4 and GitLab CI/CD templates5 to
automatically send REST API change notifications generated from
source code with our approach in Section 4.2. We will explore two
means of registering for notifications. Consumer teams can enter
the relevant service repositories via a web interface or add a de-
pendency file referencing them to their own repository. We will
also investigate methods to register private repositories containing
proprietary services. Further, we expect that different technical
roles prefer different levels of detail and timeliness of notifications.
Hence, we will experiment with different granularities and critical-
ity levels of changes and different notification triggers, e.g., opened
pull request, completed merge, or passed deployment pipeline. We
plan to evaluate our approach with a user study [31]. We will assess
its reliability by comparing the timeliness and completeness of our
REST API change notifications to manual notifications, and its help-
fulness, as done by Frick et al. [13], in terms of understandability
compared to manually written or verbal notifications.

In conclusion, the final prototype will incorporate the study
insights from Section 4.1, the REST API change extraction approach
from Section 4.2, and the automated notification approach. The user
study will evaluate our hypothesis that such a tool improves the
API change notification accuracy and reliability.
1https://spring.io/projects/spring-boot
2https://spec.openapis.org/oas/v3.1.0
3https://github.com/OpenAPITools/openapi-diff
4https://github.com/features/actions
5https://docs.gitlab.com/ee/development/cicd/templates.html
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