
Managing API Evolution in Microservice Architecture
Alexander Lercher

University of Klagenfurt, Austria
alexander.lercher@aau.at

ABSTRACT
Nowadays, many software systems are split into loosely coupled
microservices only communicating via Application Programming
Interfaces (APIs) to improve maintainability, scalability, and fault
tolerance. However, the loose coupling between microservices pro-
vides no immediate feedback on breaking API changes, and con-
suming services break or exhibit unexpected behavior only after the
first actual call to the changed API. Hence, development teams must
actively identify and communicate all breaking changes to affected
teams to stay compatible. This research addresses this problem with
three contributions. First, we identified API evolution strategies
and open challenges in practice with an explorative study. Based
on the study findings, we formulated two open research directions
for evolving publicly accessible APIs, i.e., REpresentational State
Transfer (REST) APIs. As the second contribution, we will introduce
a REST API change extraction approach to improve the change no-
tification accuracy. We plan experiments on open-source projects
to evaluate our approach’s accuracy and compare it to openapi-diff
for structural changes. Third, we plan to investigate methods for
automating communication with affected teams, which will then
improve the change notification reliability. Finally, we will evaluate
the accuracy and reliability of our notifications with a user study.

KEYWORDS
Microservice Architecture, API Evolution, Web API, REST API

ACM Reference Format:
Alexander Lercher. 2024. Managing API Evolution in Microservice Archi-
tecture. In 2024 IEEE/ACM 46th International Conference on Software Engi-
neering: Companion Proceedings (ICSE-Companion ’24), April 14–20, 2024,
Lisbon, Portugal. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/
3639478.3639800

1 INTRODUCTION
The Microservice Architecture (MSA) improves the overall main-
tainability, scalability, and fault-tolerance of a system by replac-
ing a large application with many small and loosely coupled ser-
vices [16, 24, 26]. Each such microservice manages a subset of
the overall system’s responsibilities and individual development
teams exclusively develop, maintain, and deploy a logical set of mi-
croservices. Typically, the MSA employs two means of communica-
tion [38]: event-driven for system-internal service communication,
e.g., publish-subscribe, and request-response for communicating to

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0502-1/24/04.
https://doi.org/10.1145/3639478.3639800

external services, e.g., REpresentational State Transfer (REST) [12].
In this paper, we use the term Application Programming Interface
(API) for both, as both enable communication between microser-
vices. The communication style in MSA is called "smart endpoints
and dumb pipes" and allows the APIs to evolve independently [35].

However, as each microservice API’s data structures and behav-
iors evolve independently, the API evolution process requires more
synchronization efforts between the development teams than for
a single monolithic code base [24, 39]. Changes in one API could
result in unexpected behavior and potentially break consumer ser-
vices, i.e., services interacting with the API [35]. From the consumer
perspective, such breaking changes are undetected at compile time
and only manifest during an actual call to the changed API at run-
time. Consumer-side contract tests do not mitigate this problem as
the API test doubles do not automatically reflect the latest changes.
Accordingly, development teams of consumer services rely on the
teams providing an API to correctly notify them about all changes
in advance. The provider teams can utilize regression testing [2, 15]
to detect API contract violations after introducing changes. Still,
they must understand the actual API changes leading to these vio-
lations. We conducted preliminary discussions with practitioners
regarding these challenges. In practice, they manually identify the
API changes and notify other teams about them, slowing down the
API evolution process and making it susceptible to human error.

2 RELATEDWORK
Related works identified the communication and integration of mi-
croservices as major challenges in the MSA [1, 32]. Chen et al. [8]
conducted a grey literature review on microservice API concerns
in practice and identified concerns with API design, API version-
ing, and API testing. Wang et al. [34] studied REST API change
discussions on Stack Overflow and concluded that REST APIs are
more change-prone than Java library APIs and theWeb Services De-
scription Language (WSDL). Bogart et al. [3] found that developers
maintain old API versions to prolong the transition period for con-
sumers but the several separate versions increase the maintenance
cost as a result. According to Zdun et al. [37], the microservice API
evolution process still misses efficient communication and support
for consumers affected by API changes. Similarly, Cerny et al. [6]
proposed detecting incompatible API changes and communicating
changes to consumer teams as open research challenges. Multiple
works focused on detecting and classifying API changes in source
code, e.g., in Java libraries [4, 29] and the Android Platform [23].
They automatically identify breaking source code API changes and
accordingly update the calls [36] or the API documentation [21].
Related works also investigated the evolution of WSDL [7, 27], but
only recently started to target REST APIs [20]. To this end, related
works did not discuss the underlying reasons for the API evolu-
tion challenges and how to solve them sustainably, and change
extraction approaches did not sufficiently target REST API changes.

https://orcid.org/0000-0003-4123-907X
https://doi.org/10.1145/3639478.3639800
https://doi.org/10.1145/3639478.3639800
https://doi.org/10.1145/3639478.3639800


ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal Alexander Lercher

3 RESEARCH QUESTIONS
We hypothesize that companies currently do not follow a sustain-
able microservice API evolution strategy. Further, we hypothesize
that automated approaches for reporting structural and behavioral
breaking API changes and notifying affected consumers would im-
prove the change notification accuracy and reliability, mitigating
human errors and delays with currently used strategies. Hence, we
define the following research questions (RQs) to address:

RQ1 Which strategies do developers follow to introduce and com-
municate API changes in loosely coupled systems, and what
challenges do they face?

RQ2 How can structural and behavioral changes of REST APIs be
automatically extracted based on the source code?

RQ3 How can relevant REST API changes be automatically com-
municated to consumer teams affected by these changes?

4 METHODOLOGY AND CONTRIBUTIONS
This section focuses on the research methods to answer the three
RQs and the expected contributions.

4.1 Catalogue of API evolution strategies and
challenges

To answerRQ1, we conducted semi-structured interviews [17] with
developers and architects working on developing loosely coupled
systems exposing an API, e.g., REST or event-driven, for at least
one year. We applied open coding [9] used in grounded theory [14]
and analyzed the interview transcripts iteratively. The codebook
began to stabilize after 12 interviews, and we did not encounter
any new categories for the last three interviews, indicating theo-
retical saturation [33]. To mitigate threats to validity, we applied
investigator triangulation [5] and member checking [28]. We are
currently in the process of publishing the results.

In summary [22], we conducted 17 interviews with participants
from 11 companies. We identified six microservice API evolution
strategies in practice, which we formulated as best practices to
follow. Further, we identified six challenges and formulated them
as pitfalls when handling API evolution. We drew the relationships
between the strategies and challenges and discovered two impor-
tant problems in the evolution process of publicly accessible APIs,
i.e., REST APIs. First, development teams informally communicate
REST API changes to affected teams, e.g., through verbal meetings,
instant messaging channels, or e-mails, and collaborate closely
to avoid or quickly repair unnoticed breaking changes. Second,
doubtful or unresponsive consumer teams not migrating to a new
REST API version force the provider team to support and maintain
outdated versions, continuously increasing technical debt and de-
grading the overall API design. Based on these two problems, we
propose two research directions: a) automating the impact analysis
of source code changes on the REST API and b) automating the
communication of REST API changes to affected teams.

4.2 Automated REST API change extraction
from source code changes

To answer RQ2, we plan to propose an approach for extracting
REST API changes from source code changes and to evaluate the

prototype on Java Spring Boot1 open-source projects. We selected
Java Spring Boot as one of the most popular microservice frame-
works offering high flexibility in defining REST APIs [8, 10].

Our approachwill consist of a change extractor and a change clas-
sifier. The change extractor analyzes the OpenAPI specifications2
of two REST API versions, generates suitable intermediate mod-
els introduced by us, and extracts the structural changes between
them using GumTree [11], a popular approach for differencing tree
structures [13, 19, 25]. To extract the behavioral changes, we will
experiment with the limited behavioral description provided by the
OpenAPI specification and supplement it with a lightweight control
and data flow analysis of the source code, such as introduced by
Hanam et al. [18]. We will also evaluate the feasibility of describing
detailed behavioral information by extending the OpenAPI speci-
fication. Next, we will investigate existing REST API change type
taxonomies [30, 34], currently focusing on structural changes, and
will extend them with novel behavioral changes. The change classi-
fier then applies our extended taxonomy on the extracted structural
and behavioral changes and finally outputs the corresponding REST
API changes. We plan experiments on existing open-source projects
to evaluate our approach’s applicability and change classification
accuracy. Further, we will compare our approach to the state-of-
the-art openapi-diff3, which identifies structural changes between
OpenAPI specifications, but does not detect behavioral changes.

4.3 Automated communication of REST API
changes to affected teams

To answerRQ3, we will build on the findings from our study in Sec-
tion 4.1 by automating REST API change notifications to affected
teams via online collaboration platforms, such as GitHub andGitLab.
We will provide GitHub Actions4 and GitLab CI/CD templates5 to
automatically send REST API change notifications generated from
source code with our approach in Section 4.2. We will explore two
means of registering for notifications. Consumer teams can enter
the relevant service repositories via a web interface or add a de-
pendency file referencing them to their own repository. We will
also investigate methods to register private repositories containing
proprietary services. Further, we expect that different technical
roles prefer different levels of detail and timeliness of notifications.
Hence, we will experiment with different granularities and critical-
ity levels of changes and different notification triggers, e.g., opened
pull request, completed merge, or passed deployment pipeline. We
plan to evaluate our approach with a user study [31]. We will assess
its reliability by comparing the timeliness and completeness of our
REST API change notifications to manual notifications, and its help-
fulness, as done by Frick et al. [13], in terms of understandability
compared to manually written or verbal notifications.

In conclusion, the final prototype will incorporate the study
insights from Section 4.1, the REST API change extraction approach
from Section 4.2, and the automated notification approach. The user
study will evaluate our hypothesis that such a tool improves the
API change notification accuracy and reliability.
1https://spring.io/projects/spring-boot
2https://spec.openapis.org/oas/v3.1.0
3https://github.com/OpenAPITools/openapi-diff
4https://github.com/features/actions
5https://docs.gitlab.com/ee/development/cicd/templates.html

https://spring.io/projects/spring-boot
https://spec.openapis.org/oas/v3.1.0
https://github.com/OpenAPITools/openapi-diff
https://github.com/features/actions
https://docs.gitlab.com/ee/development/cicd/templates.html


Managing API Evolution in Microservice Architecture ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal

REFERENCES
[1] Nuha Alshuqayran, Nour Ali, and Roger Evans. 2016. A Systematic Mapping

Study in Microservice Architecture. In 2016 IEEE 9th International Conference on
Service-Oriented Computing and Applications (SOCA). 44–51.

[2] Swarnendu Biswas, Rajib Mall, Manoranjan Satpathy, and Srihari Sukumaran.
2011. Regression Test Selection Techniques: A Survey. Informatica (Slovenia) 35,
3 (2011), 289–321.

[3] Chris Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung. 2021. When
and How to Make Breaking Changes: Policies and Practices in 18 Open Source
Software Ecosystems. ACM Trans. Softw. Eng. Methodol. 30, 4, Article 42 (jul
2021), 56 pages. https://doi.org/10.1145/3447245

[4] Aline Brito, Laerte Xavier, Andre Hora, and Marco Tulio Valente. 2018. APIDiff:
Detecting API breaking changes. In 2018 IEEE 25th International Conference
on Software Analysis, Evolution and Reengineering (SANER). 507–511. https:
//doi.org/10.1109/SANER.2018.8330249

[5] John L. Campbell, Charles Quincy, Jordan Osserman, and Ove K. Pedersen. 2013.
Coding In-depth Semistructured Interviews: Problems of Unitization and Inter-
coder Reliability and Agreement. Sociological Methods & Research 42, 3 (2013),
294–320. https://doi.org/10.1177/0049124113500475

[6] Tomas Cerny, Michael J. Donahoo, and Michal Trnka. 2018. Contextual Under-
standing of Microservice Architecture: Current and Future Directions. SIGAPP
Appl. Comput. Rev. 17, 4 (jan 2018), 29–45.

[7] Animesh Chaturvedi and Dave Binkley. 2021. Web Service Slicing: Intra and Inter-
Operational Analysis to Test Changes. IEEE Transactions on Services Computing
14, 3 (2021), 930–943. https://doi.org/10.1109/TSC.2018.2821157

[8] Fangwei Chen, Li Zhang, and Xiaoli Lian. 2021. A systematic gray literature re-
view: The technologies and concerns of microservice application programming in-
terfaces. Software: Practice and Experience 51, 7 (2021), 1483–1508. https://doi.org/
10.1002/spe.2967 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2967

[9] Juliet M. Corbin and Anselm Strauss. 1990. Grounded theory research: Procedures,
canons, and evaluative criteria. Qualitative Sociology 13, 1 (01 Mar 1990), 3–21.

[10] Hai Dinh-Tuan, Maria Mora-Martinez, Felix Beierle, and Sandro Rodriguez Gar-
zon. 2020. Development Frameworks for Microservice-Based Applications: Evalu-
ation and Comparison. In Proceedings of the 2020 European Symposium on Software
Engineering (Rome, Italy) (ESSE ’20). Association for Computing Machinery, New
York, NY, USA, 12–20. https://doi.org/10.1145/3393822.3432339

[11] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin
Monperrus. 2014. Fine-Grained and Accurate Source Code Differencing. In
Proceedings of the 29th ACM/IEEE International Conference on Automated Software
Engineering (Vasteras, Sweden) (ASE ’14). Association for Computing Machinery,
New York, NY, USA, 313–324. https://doi.org/10.1145/2642937.2642982

[12] Roy Thomas Fielding. 2000. REST: architectural styles and the design of network-
based software architectures. Doctoral dissertation, University of California (2000).

[13] Veit Frick, Thomas Grassauer, Fabian Beck, and Martin Pinzger. 2018. Generating
Accurate and Compact Edit Scripts Using Tree Differencing. In 2018 IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME). 264–274.
https://doi.org/10.1109/ICSME.2018.00036

[14] B.G. Glaser and A.L. Strauss. 1967. The Discovery of Grounded Theory: Strategies
for Qualitative Research. Aldine.

[15] Patrice Godefroid, Daniel Lehmann, and Marina Polishchuk. 2020. Differential
Regression Testing for REST APIs. In Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis (Virtual Event, USA)
(ISSTA 2020). Association for ComputingMachinery, New York, NY, USA, 312–323.
https://doi.org/10.1145/3395363.3397374

[16] Konrad Gos and Wojciech Zabierowski. 2020. The Comparison of Microservice
and Monolithic Architecture. In 2020 IEEE XVIth International Conference on the
Perspective Technologies and Methods in MEMS Design (MEMSTECH). 150–153.

[17] Svetlana Gudkova. 2018. Interviewing in Qualitative Research. Springer Interna-
tional Publishing, Cham, 75–96.

[18] Quinn Hanam, Ali Mesbah, and Reid Holmes. 2019. Aiding Code Change
Understanding with Semantic Change Impact Analysis. In 2019 IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME). 202–212.
https://doi.org/10.1109/ICSME.2019.00031

[19] Kaifeng Huang, Bihuan Chen, Xin Peng, Daihong Zhou, Ying Wang, Yang Liu,
and Wenyun Zhao. 2018. ClDiff: Generating Concise Linked Code Differences. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering (Montpellier, France) (ASE 2018). Association for Computing Ma-
chinery, New York, NY, USA, 679–690. https://doi.org/10.1145/3238147.3238219

[20] Holger Knoche and Wilhelm Hasselbring. 2021. Continuous API Evolution in
Heterogenous Enterprise Software Systems. In 2021 IEEE 18th International Con-
ference on Software Architecture (ICSA). 58–68. https://doi.org/10.1109/ICSA51549.
2021.00014

[21] Seonah Lee, Rongxin Wu, Shing-Chi Cheung, and Sungwon Kang. 2021. Au-
tomatic Detection and Update Suggestion for Outdated API Names in Docu-
mentation. IEEE Transactions on Software Engineering 47, 4 (2021), 653–675.
https://doi.org/10.1109/TSE.2019.2901459

[22] Alexander Lercher, Johann Glock, Christian Macho, and Martin Pinzger. 2023.
Microservice API Evolution in Practice: A Study on Strategies and Challenges.
arXiv:2311.08175 [cs.SE]

[23] Li Li, Tegawendé F. Bissyandé, Haoyu Wang, and Jacques Klein. 2018. CiD:
Automating the Detection of API-Related Compatibility Issues in Android Apps.
In Proceedings of the 27th ACM SIGSOFT International Symposium on Software
Testing and Analysis (Amsterdam, Netherlands) (ISSTA 2018). Association for
Computing Machinery, New York, NY, USA, 153–163. https://doi.org/10.1145/
3213846.3213857

[24] Shang-Pin Ma, Chen-Yuan Fan, Yen Chuang, I-Hsiu Liu, and Ci-Wei Lan. 2019.
Graph-based and scenario-driven microservice analysis, retrieval, and testing.
Future Generation Computer Systems 100 (2019), 724–735.

[25] Junnosuke Matsumoto, Yoshiki Higo, and Shinji Kusumoto. 2019. Beyond
GumTree: A Hybrid Approach to Generate Edit Scripts. In 2019 IEEE/ACM
16th International Conference on Mining Software Repositories (MSR). 550–554.
https://doi.org/10.1109/MSR.2019.00082

[26] S. Newman. 2019. Monolith to Microservices: Evolutionary Patterns to Transform
Your Monolith. O’Reilly Media, Incorporated.

[27] Daniele Romano and Martin Pinzger. 2012. Analyzing the Evolution of Web
Services Using Fine-Grained Changes. In 2012 IEEE 19th International Conference
on Web Services. 392–399. https://doi.org/10.1109/ICWS.2012.29

[28] P. Runeson, M. Höst, A. Rainer, and B. Regnell. 2012. Data Analysis and Inter-
pretation. John Wiley & Sons, Ltd, Chapter 5, 61–76. https://doi.org/10.1002/
9781118181034.ch5

[29] Danilo Silva and Marco Tulio Valente. 2017. RefDiff: Detecting Refactorings in
Version Histories. In 2017 IEEE/ACM 14th International Conference on Mining
Software Repositories (MSR). 269–279. https://doi.org/10.1109/MSR.2017.14

[30] S.M. Sohan, Craig Anslow, and Frank Maurer. 2015. A Case Study of Web API
Evolution. In 2015 IEEE World Congress on Services. 245–252. https://doi.org/10.
1109/SERVICES.2015.43

[31] Klaas-Jan Stol and Brian Fitzgerald. 2020. Guidelines for Conducting Software
Engineering Research. Springer International Publishing, Cham, 27–62. https:
//doi.org/10.1007/978-3-030-32489-6_2

[32] Mehmet Söylemez, Bedir Tekinerdogan, and Ayça Kolukısa Tarhan. 2022. Chal-
lenges and Solution Directions of Microservice Architectures: A Systematic Liter-
ature Review. Applied Sciences 12, 11 (2022). https://doi.org/10.3390/app12115507

[33] Frank J. van Rijnsoever. 2017. (I Can’t Get No) Saturation: A simulation and
guidelines for sample sizes in qualitative research. PLOS ONE 12, 7 (07 2017),
1–17. https://doi.org/10.1371/journal.pone.0181689

[34] ShaohuaWang, Iman Keivanloo, and Ying Zou. 2014. HowDoDevelopers React to
RESTful API Evolution?. In Service-Oriented Computing, Xavier Franch, Aditya K.
Ghose, Grace A. Lewis, and Sami Bhiri (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 245–259.

[35] Menghan Wu, Yang Zhang, Jiakun Liu, Shangwen Wang, Zhang Zhang, Xin Xia,
and Xinjun Mao. 2022. On the Way to Microservices: Exploring Problems and
Solutions from Online Q&A Community. In 2022 IEEE International Conference
on Software Analysis, Evolution and Reengineering (SANER). 432–443. https:
//doi.org/10.1109/SANER53432.2022.00058

[36] Zhenchang Xing and Eleni Stroulia. 2007. API-Evolution Support with Diff-
CatchUp. IEEE Transactions on Software Engineering 33, 12 (2007), 818–836.
https://doi.org/10.1109/TSE.2007.70747

[37] Uwe Zdun, Erik Wittern, and Philipp Leitner. 2020. Emerging Trends, Challenges,
and Experiences in DevOps and Microservice APIs. IEEE Software 37, 1 (2020),
87–91. https://doi.org/10.1109/MS.2019.2947982

[38] He Zhang, Shanshan Li, Zijia Jia, Chenxing Zhong, and Cheng Zhang. 2019.
Microservice Architecture in Reality: An Industrial Inquiry. In 2019 IEEE Interna-
tional Conference on Software Architecture (ICSA). 51–60. https://doi.org/10.1109/
ICSA.2019.00014

[39] Olaf Zimmermann, Mirko Stocker, Daniel Lübke, Cesare Pautasso, and Uwe
Zdun. 2019. Introduction to Microservice API Patterns (MAP). In International
Conference on Microservices (Microservices 2019). https://doi.org/10.4230/OASIcs.
Microservices.2017/2019.4

https://doi.org/10.1145/3447245
https://doi.org/10.1109/SANER.2018.8330249
https://doi.org/10.1109/SANER.2018.8330249
https://doi.org/10.1177/0049124113500475
https://doi.org/10.1109/TSC.2018.2821157
https://doi.org/10.1002/spe.2967
https://doi.org/10.1002/spe.2967
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2967
https://doi.org/10.1145/3393822.3432339
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1109/ICSME.2018.00036
https://doi.org/10.1145/3395363.3397374
https://doi.org/10.1109/ICSME.2019.00031
https://doi.org/10.1145/3238147.3238219
https://doi.org/10.1109/ICSA51549.2021.00014
https://doi.org/10.1109/ICSA51549.2021.00014
https://doi.org/10.1109/TSE.2019.2901459
https://arxiv.org/abs/2311.08175
https://doi.org/10.1145/3213846.3213857
https://doi.org/10.1145/3213846.3213857
https://doi.org/10.1109/MSR.2019.00082
https://doi.org/10.1109/ICWS.2012.29
https://doi.org/10.1002/9781118181034.ch5
https://doi.org/10.1002/9781118181034.ch5
https://doi.org/10.1109/MSR.2017.14
https://doi.org/10.1109/SERVICES.2015.43
https://doi.org/10.1109/SERVICES.2015.43
https://doi.org/10.1007/978-3-030-32489-6_2
https://doi.org/10.1007/978-3-030-32489-6_2
https://doi.org/10.3390/app12115507
https://doi.org/10.1371/journal.pone.0181689
https://doi.org/10.1109/SANER53432.2022.00058
https://doi.org/10.1109/SANER53432.2022.00058
https://doi.org/10.1109/TSE.2007.70747
https://doi.org/10.1109/MS.2019.2947982
https://doi.org/10.1109/ICSA.2019.00014
https://doi.org/10.1109/ICSA.2019.00014
https://doi.org/10.4230/OASIcs.Microservices.2017/2019.4
https://doi.org/10.4230/OASIcs.Microservices.2017/2019.4

	Abstract
	1 Introduction
	2 Related work
	3 Research Questions
	4 Methodology and Contributions
	4.1 Catalogue of API evolution strategies and challenges
	4.2 Automated REST API change extraction from source code changes
	4.3 Automated communication of REST API changes to affected teams

	References

